Introduction/Background

Peripheral Blood Mononuclear Cell (PBMC) purifications are a critically important cell preparation in a broad range of research and clinical studies including such profound applications as HIV research, cancer immunotherapy, cord blood banking, regenerative medicine, and fundamental studies of cytokine-based immune responses.

PBMCs are commonly extracted from peripheral blood, bone marrow and umbilical cord samples through density gradient centrifugation or magnetic bead separations. The approaches are designed to purify the leukocytes (PBMCs) of interest from other cellular components, particularly red blood cells (RBCs). Characterizing the viability and basic composition of the final cell isolates is critical due to the variables associated with:

- The efficiency of the sample extraction, handling, and purification process.
- The diversity of the source samples (i.e. peripheral blood vs. cord blood vs. bone marrow).
- Potential cell trauma/necrosis due to the common need to cryopreserve or “biobank” samples.

Beyond the initial health of the purified samples, researchers subsequently focus on immunophenotyping of the resulting samples to both identify sub-populations of PBMCs for quantification as well as for monitoring the varying expression levels of the characteristic “cluster of differentiation” (CD) markers that uniquely characterize these sub-populations. Specifically, fluorophore-conjugated antibodies are used to target the various CD receptor/markers and flow cytometry is commonly applied to the quantification of the marker expression levels and to the differentiation of sub-populations. Beyond CD marker expression, precise monitoring of counts and cell sizes can be essential to the analysis. One such example is the critical importance of cell size to treatment efficacy in the extraordinarily promising research arena of chimeric antigen receptor T (CAR-T) cell cancer immunotherapy. Sizing, in particular, is an area in which conventional flow cytometry systems have traditional struggled, relying on light-scattering as opposed to more precise sizing techniques, such as Coulter Principle sizing.

In this application note, we demonstrate how Orflo’s newest, “Next Generation Flow Cytometer”, the Moxi GO (Figure 1), can be applied towards the characterization of PBMC preparations. The Orflo Moxi GO system is a simple, rapid, and effective flow cytometric platform that can be applied to a wide range of cellular analysis, including PBMC immunophenotyping, counts, purity checks, viability, and sizing. The system combines the Coulter Principle, the recognized gold standard for precise cell sizing and counts, with simultaneous fluorescent measurements using a green (532nm) laser and 561nm/LP-filtered PMT detection. The fluorescence configuration is ideal for many of the most common fluorophores including phycoerythrin (PE, for immunolabeling), proidium iodide (PI, for viability), and RFP (tdTomato/dsRed, for transfection efficiency measurement). The Moxi GO utilizes a disposable flow-cell architecture, does not require warming-up, runs test in under 10 seconds, and does not require cleaning/shutdown protocols. The result is an affordable flow cytometer that delivers “Assays on Demand,” including for PBMC analysis.
Here we provide example data and protocol(s) for the application of the Moxi GO to the characterization of PBMC samples. A unique feature of Moxi GO is that the system allows PBMC analysis, to both flow experts and novices, right in their culture hood or at their lab benchtop. In this regard, the ease-of-use and ready availability of the system will greatly enable researchers’ ability to rapidly characterize and study PBMCs. This, in addition to the affordability of the system, will undoubtedly establish the Moxi GO as a required tool for any lab that is involved in studies that utilize PBMCs.

Example Data – Results and Discussion

In this application note, we applied Orflo's Moxi GO to the study of Ficoll-Paque™ purified PBMCs from human peripheral blood. The system was applied to generating example characterizations of the PBMC sample by demonstrating system counts and sizing, PBMC purity analysis, and basic phenotyping by using phycoerythrin (PE)-conjugated antibody targets to target an array of CD markers.

Figure 2 shows a typical PMBC test output on the Moxi GO. After a brief <10 second test, an initial system output of a scatter plot (Figure 2a) of the 561nm/LP fluorescence vs. Coulter-Based sizing is displayed. From this screen, the user can quickly size gate (blue marker/dots, Figure 2a) on sub-populations. The example shows the (predominantly) lymphocyte population in the size gated region (Figure 2a, between blue marker lines) and a fluorescence (Figure 2a, red) gate positioned to distinguish the CD4+ (“upper”) vs. CD4- (“lower”) lymphocytes. The black boxes underneath the scatter plot provide the precise, Coulter-Principle-based, concentrations and sizes of the lymphocyte sub-populations as well as the associated median fluorescence intensity (MFI) of each population. To the right of the size-gated region, the (predominantly) monocytes population can be uniquely size-identified from the lymphocyte population. As these are not included in the size-gated region, the monocyte statistics are not included in the black boxes below (Figure 2a and Figure 2b only). Figure 2b shows the fluorescence (PE) histogram for the lymphocyte-gated region, clearly showing the fluorescence separation in the CD4+ vs. CD4- populations as well as the relevant populations statistics. Using the touch-screen, the analyzed regions can be quickly adjusted by touching and dragging the gate markers (similar to a smart phone interface). In Figure 2c, the right size marker was moved to the far right of the size range and the display was changed to show the size

![Figure 2 - User-generated screenshots (on-unit) showing the standard Moxi GO output for purified PBMCs.
](image-url)
Immunophenotyping (CD marker labeling) PBMC’s with Orflo’s Moxi GO – Next Generation Flow Cytometer

Orflo Application Note
11/2016

Figure 3 – Basic PBMC purity and characteristic checks. (PI) Viability stain for PBMC health shows cells tolerated blood draw and Ficoll procedure well (>97% viable). Yellow arrow points to residual RBC population. (CD45) Leukocyte (WBC) generic label – confirms the gating of predominantly leukocytes (>90%). Note: Lower left cluster “tail” would be residual RBCs, platelet multiplets, and other debris. (CD66b) Granulocyte label shows very little (~2%) granulocyte contamination. (CD41/61) Platelet-specific label. Increased scatter above noise cluster (yellow box) reflects small volume platelet labeling. Fluorescent leukocytes (>6µm, yellow circle) reflect binding of platelets to those cells, with a particular affinity to monocytes.

Beyond concentration and cell sizing, Figure 3 shows some of the key parameters that the Moxi GO can measure in order to determine the overall purity and characteristics of the PMBC isolation. First, the cells were stained with propidium iodide (PI, first image) to assess the cell viability following the procedure. As a cell impermeant dye that increases fluorescence up to 50x upon binding to DNA, PI is widely used in flow cytometry to determine cell viability. In this case, the 97% viability is validation that the cells tolerated the Ficoll separation procedure well. Additionally, as indicated by the yellow arrow, (Figure 3, first image), the degree of RBC contamination can be qualitatively evaluated. The PE-CD45 label (Figure 3, second image) provides a way to label all leukocytes in the sample to verify that the distinct cell populations are, in fact, leukocytes as intended. In the third image (Figure 3), a granulocyte-specific label (PE-CD66) was applied to verify that the level of granulocyte contamination is low as would expected for a properly performed isolation. Finally, a CD41/61 label (Figure 3, fourth image) was applied to identify the level of platelet contamination (yellow rectangle) as well as the activated platelet binding to the monocyte population (yellow circle). Using stains such as those shown in Figure 2 and 3, the quality of PBMC isolation can be easily and quickly evaluated. Results can then be specifically applied in feedback to aspects of the isolation protocol to optimize the overall purification protocol/process.

Figure 4 shows several example results for the application of the Moxi GO to phenotyping of the PMBC sample through PE conjugated antibody CD-marker staining. For each CD marker label, the Moxi GO scatter plot output is presented as the top image. A fluorescence histogram overlay of the CD-marker output vs. the output of the associated isotype control sample is shown below the scatter plot image. All the images were easily generated on unit by the user. The overlay histogram, in particular, highlights the Moxi GO’s ability to easily and powerfully provide direct data comparisons on-unit. The examples in Figure 4 show identification of the following sub-populations: All Lymphocytes (CD2), T Lymphocytes (CD3), CD4+ T Cells (CD4, size gated), CD8+ T-Cells (CD8, size-gated), monocytes (CD11b), and B-Cells (CD19).

Summary

In this application note, we provide a protocol and data showing how the Moxi GO can easily be applied to the characterization of PBMC samples. The Moxi GO (Figure 1) is a flow cytometer with a 532nm (green)
Figure 4 - Examples of CD marker labeling of PBMC’s. Labeled to identify CD Receptor (clone). For each marker, a scatter plot of the fluorescence output vs. Coulter-based sizing is shown (top) and an on-unit histogram overlay of the marker output (red) vs. the isotype control output (gray) is shown (below).
and 561 nm/LP PMT collection filter, ideally suited for capturing emission spectra from Phycoerythrin (PE), Propidium Iodide (PI) and RFP (dsRed or tdTomato) cellular labels/stains. One of the most powerful features of the Moxi GO instrument is the ease-of-use and versatility in collection of data. With an ability to run tests without the need for system warm-up, maintenance, or shutdown procedures, it is uniquely suited for quick immunophenotyping of samples including design of experiment (DOE) and kinetic-analysis studies. In addition, it’s small footprint and affordable price enable researchers to place the Moxi GO in the culture hood or lab benchtop, allowing for more immediate and frequent flow analysis of their systems over (potentially) long periods of time. For PBMC analysis, this easy access allows for great power and flexibility in performing purity checks and CD marker phenotyping. Finally the Moxi GO touchscreen GUI is designed to make even complex flow analysis accessible to researchers, regardless of their flow expertise. These features should establish the Moxi GO as a staple in any lab performing PMBC studies or other cell-based flow cytometry techniques.

References

Methods

PBMC isolation from Peripheral Blood

Human peripheral blood samples were collected into sodium citrate or sodium heparin coated vacutainers. The blood was then processed with Ficoll-Paque Premium (GE Healthcare, 17-5442-02) following the manufacturer’s protocol. Briefly, 2ml blood was diluted 1:1 with HBSS (Sigma, H6648) and carefully layered over 3ml of ficoll medium in 15ml centrifuge tubes. Multiple tubes were prepared and centrifuged at 400xg (40min, 18°C). The PBMC layer was extracted with a pasteur pipette and washed (100g, 10 min 18°C) twice before final re-suspension in staining buffer (BioLegend #420201).

PBMC Viability Stain

PBMC’s were stained with Orflo’s Moxi Cyte Viability Reagent (Orflo #MXA055) by adding 15µL of the PBMC final suspension to 135µL of viability reagent and incubating the mixture (5min/room temperature/dark). Following incubation, 75µL of the cells was run on the Moxi GO using the "Viability Assay."

CD marker Labeling Protocol

All cells were labeled following the “Moxi GO – Cell Surface Immunolabeling Protocol” detailed below. PE-conjugated antibodies used in this application note were sourced as follows:
Orflo Application Note

Immunophenotyping (CD marker labeling) PBMC’s with Orflo’s Moxi GO – Next Generation Flow Cytometer

<table>
<thead>
<tr>
<th>Target (Clone)</th>
<th>Manufacturer</th>
<th>Cat. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD2 (RPA-T2.10)</td>
<td>Tonbo BioSciences</td>
<td>50-0029-T025</td>
</tr>
<tr>
<td>CD3 (OKT3)</td>
<td>BioLegend</td>
<td>317308</td>
</tr>
<tr>
<td>CD4 (OKT4)</td>
<td>BioLegend</td>
<td>317409</td>
</tr>
<tr>
<td>CD8 (Hit8A)</td>
<td>BioLegend</td>
<td>300907</td>
</tr>
<tr>
<td>CD11b (ICRF44)</td>
<td>Tonbo BioSciences</td>
<td>50-0118-ST05</td>
</tr>
<tr>
<td>CD19(HIB19)</td>
<td>Tonbo BioSciences</td>
<td>50-0199-ST05</td>
</tr>
<tr>
<td>CD41/CD61(A2A9/6)</td>
<td>BioLegend</td>
<td>359805</td>
</tr>
<tr>
<td>CD66b(G10F5)</td>
<td>BioLegend</td>
<td>305105</td>
</tr>
</tbody>
</table>

PE-conjugated isotype controls were sourced as follows:

<table>
<thead>
<tr>
<th>Isotype (Clone)</th>
<th>Manufacturer</th>
<th>Cat. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG1, κ (MOPC-21)</td>
<td>BioLegend</td>
<td>400111</td>
</tr>
<tr>
<td>IgG2a, κ (MOPC-173)</td>
<td>BioLegend</td>
<td>400213</td>
</tr>
<tr>
<td>IgG2b, κ (MPC-11)</td>
<td>BioLegend</td>
<td>400311</td>
</tr>
</tbody>
</table>

Data Analysis and Output
All images for the application note were generated directly from the Moxi GO unit using the “File | Print | Export Screenshot” functionality available for each test. Histogram Overlays (Figure 4) were generated using the Moxi Go’s on-unit “Test Compare/Overlay” functionality. Off-unit analysis (not used directly in the application note) was performed by exporting the Moxi GO FCS 3.1 test files into FlowJo X (Mac OSX).
Moxi GO – Cell Surface Immunolabeling Protocol

Primary Antibody Staining Protocol

1. Suspend cells at density of 2-5 x 10^6 cells/ml in cell staining. (Note: For PBMC Samples, this would be following the last wash of the PBMC’s, re-suspend the pellet directly into the staining buffer). Combine pellets if necessary. Verify counts using the Moxi GO instrument.
2. Aliquot 100 μl of cells (2-5 x 10^5 total cells) per 1.5ml micro centrifuge tube for each sample type.

(Optional) Block Fc-Receptors *(recommended for reducing nonspecific staining of antibodies)*

 i. Add 1 test volume (typically 5 μl) of Fc Receptor Blocking Solution *(BioLegend cat#422301)* to each 100 μl vial of cells.
 ii. Incubate for 10 minutes at room temperature.
3. Quick spin (e.g. 500 x g, 5 seconds) antibody vials for maximum volume.
4. Add appropriate antibody to each micro centrifuge tube.
5. Vortex each tube gently.
6. Incubate for 15-20 min at 4°C, protect from light.
7. Wash 2X with 2ml of Cell Staining Buffer by centrifugation at 350 x g for 5 minutes at ≤18°C.
8. **FOR DIRECTLY CONJUGATED ANTIBODIES:**
 Re-suspend pellet in 1ml of cell staining buffer (ideally target 2e5 – 5e5 cells/ml) and add 20μl of Moxi Cyte Flow Reagent. Invert 10x to mix. Analyze with Moxi GO using the “Open Flow Cytometry” app.

FOR PURIFIED ANTIBODIES:
 Re-suspend pellet in residual buffer (typically 40-50μl) and add Cell Staining Buffer to 100μl total volume. Proceed to Secondary Antibody Staining.

Secondary Antibody Staining

9. Add 1 test volume (typically 2-5 μl) of 2° Ab (conc. 0.2μg/ml) to 100 μl cells (≤0.5μg per million cells in 100 μl).
10. Incubate for 15-20 minutes at 4°C, protect from light.
11. Wash 2x with 2ml of Cell Staining Buffer.
12. Re-suspend pellet in 1 ml of Cell Staining Buffer (ideally target 2e5 – 5e5 cells/ml).
13. Add 20μl of Moxi Cyte Flow Reagent. Invert 10x to mix.
Moxi GO Cell Surface Immunolabeling Protocol - Core Product/Reagent List

- **Cat #MXG001** – Orflo Moxi GO Next Generation Flow Cytometer
- **Cat #MXC030** – MF-S+ Cassettes
- **Cat #MXA080** – Orflo Flow Reagent
- Cell Staining Buffer (E.g. BioLegend cat # 420201 or PBS with 0.5% BSA, 0.1% Azide)
- PBS (any formulation, e.g. Gibco, Cat #10010023)
- Phycoerythrin (PE) labeled antibody (e.g. PE anti-human CD4 - BioLegend cat # 300507) – Note: Substitute Antibodies that are compatible with 532nm excitation and 561nm/LP emission can also be used instead of PE.
- *(Optional)* Human TruStain FcX - Fc Receptor Blocking Solution (BioLegend cat # 422301)